
The MIDI Specification
MIDI consists of both a simple hardware interface, and a more elaborate transmission protocol.

Hardware
MIDI is an asynchronous serial interface. The baud rate is 31.25 Kbaud (+/- 1%). There is 1 start bit,
8 data bits, and 1 stop bit (ie, 10 bits total), for a period of 320 microseconds per serial byte.

The MIDI circuit is current loop, 5 mA. Logic 0 is current ON. One output drives one (and only one)
input. To avoid grounding loops and subsequent data errors, the input is opto-isolated. It requires less
than 5 mA to turn on. The Sharp PC-900 and HP 6N138 optoisolators are satisfactory devices. Rise
and fall time for the optoisolator should be less than 2 microseconds.

The standard connector used for MIDI is a 5 pin DIN. Separate jacks (and cable runs) are used for
input and output, clearly marked on a given device (ie, the MIDI IN and OUT are two separate DIN
female panel mount jacks). 50 feet is the recommended maximum cable length. Cables are shielded
twisted pair, with the shield connecting pin 2 at both ends. The pair is pins 4 and 5. Pins 1 and 3 are
not used, and should be left unconnected.

A device may also be equipped with a MIDI THRU jack which is used to pass the MIDI IN signal to
another device. The MIDI THRU transmission may not be performed correctly due to the delay time
(caused by the response time of the opto-isolator) between the rising and falling edges of the square
wave. These timing errors will tend to add in the "wrong direction" as more devices are daisy-
chained to other device's MIDI THRU jacks. The result is that there is a limit to the number of
devices that can be daisy-chained.

Messages
The MIDI protocol is made up of messages. A message consists of a string (ie, series) of 8-bit bytes.
MIDI has many such defined messages. Some messages consist of only 1 byte.Other messages have
2 bytes. Still others have 3 bytes. One type of MIDI message can even have an unlimited number of
bytes. The one thing that all messages have in common is that the first byte of the message is the
Status byte. This is a special byte because it's the only byte that has bit #7 set. Any other following
bytes in that message will not have bit #7 set. So, you can always detect the start a MIDI message
because that's when you receive a byte with bit #7 set. This will be a Status byte in the range 0x80 to
0xFF. The remaining bytes of the message (ie, the data bytes, if any) will be in the range 0x00 to
0x7F.

The Status bytes of 0x80 to 0xEF are for messages that can be broadcast on any one of the 16 MIDI
channels. Because of this, these are called Voice messages. (My own preference is to say that these
messages belong in the Voice Category). For these Status bytes, you break up the 8-bit byte into 2
4-bit nibbles. For example, a Status byte of 0x92 can be broken up into 2 nibbles with values of 9
(high nibble) and 2 (low nibble). The high nibble tells you what type of MIDI message this is. Here
are the possible values for the high nibble, and what type of Voice Category message each
represents:

8 = Note Off
9 = Note On

A = AfterTouch (ie, key pressure)
B = Control Change
C = Program (patch) change
D = Channel Pressure
E = Pitch Wheel

So, for our example status of 0x92, we see that its message type is Note On (ie, the high nibble is 9).
What's the low nibble of 2 mean? This means that the message is on MIDI channel 2. There are 16
possible (logical) MIDI channels, with 0 being the first. So, this message is a Note On on channel 2.
What status byte would specify a Program Change on channel 0? The high nibble would need to be
C for a Program Change type of message, and the low nibble would need to be 0 for channel 0. Thus,
the status byte would be 0xC0. How about a Program Change on channel 15 (ie, the last MIDI
channel). Again, the high nibble would be C, but the low nibble would be F (ie, the hexademical digit
for 15).Thus, the status would be 0xCF.

NOTE: Although the MIDI Status byte counts the 16 MIDI channels as numbers 0 to F (ie, 15), all
MIDI gear (including computer software) displays a channel number to the musician as 1 to 16. So, a
Status byte sent on MIDI channel 0 is considered to be on "channel 1" as far as the musician is
concerned. This discrepancy between the status byte's channel number, and what channel the
musician "believes" that a MIDI message is on, is accepted because most humans start counting
things from 1, rather than 0.

The Status bytes of 0xF0 to 0xFF are for messages that aren't on any particular channel (and
therefore all daisy-chained MIDI devices always can "hear" and choose to act upon these messages.
Contrast this with the Voice Category messages, where a MIDI device can be set to respond to those
MIDI messages only on a specified channel). These status bytes are used for messages that carry
information of interest to all MIDI devices, such as syncronizing all playback devices to a particular
time. (By contrast, Voice Category messages deal with the individual musical parts that each
instrument might play, so the channel nibble scheme allows a device to respond to its own MIDI
channel while ignoring the Voice Category messages intended for another device on another
channel).

These status bytes are further divided into two catagories. Status bytes of 0xF0 to 0xF7 are called
System Common messages. Status bytes of 0xF8 to 0xFF are called System Realtime messages. The
implications of such will be discussed later.

Actually, certain Status bytes within this range are not defined by the MIDI spec to date, and are
reserved for future use. For example, Status bytes of 0xF4, 0xF5, 0xF9, and 0xFD are not used. If a
MIDI device ever receives such a Status, it should ignore that message. See Ignoring MIDI
Messages.

What follows is a description of each message type. The description tells what the message does,
what its status byte is, and whether it has any subsequent data bytes and what information those
carry. Generally, these descriptions take the view of a device receiving such messages (ie, what the
device would typically be expected to do when receiving particular messages). When applicable,
remarks about a device that transmits such messages may be made.

Note Off

Category: Voice

Purpose

Indicates that a particular note should be released. Essentially, this means that the note stops
sounding, but some patches might have a long VCA release time that needs to slowly fade the sound
out. Additionally, the device's Hold Pedal controller may be on, in which case the note's release is
postponed until the Hold Pedal is released. In any event, this message either causes the VCA to move
into the release stage, or if the Hold Pedal is on, indicates that the note should be released (by the
device automatically) when the Hold Pedal is turned off. If the device is a MultiTimbral unit, then
each one of its Parts may respond to Note Offs on its own channel. The Part that responds to a
particular Note Off message is the one assigned to the message's MIDI channel.

Status

0x80 to 0x8F where the low nibble is the MIDI channel.

Data

Two data bytes follow the Status.

The first data is the note number. There are 128 possible notes on a MIDI device, numbered 0 to 127
(where Middle C is note number 60). This indicates which note should be released.

The second data byte is the velocity, a value from 0 to 127. This indicates how quickly the note
should be released (where 127 is the fastest). It's up to a MIDI device how it uses velocity
information. Often velocity will be used to tailor the VCA release time. MIDI devices that can
generate Note Off messages, but don't implement velocity features, will transmit Note Off messages
with a preset velocity of 64.

Errata

An All Notes Off controller message can be used to turn off all notes for which a device received
Note On messages (without having received respective Note Off messages).

Note On

Category: Voice

Purpose

Indicates that a particular note should be played. Essentially, this means that the note starts sounding,
but some patches might have a long VCA attack time that needs to slowly fade the sound in. In any
case, this message indicates that a particular note should start playing (unless the velocity is 0, in
which case, you really have a Note Off). If the device is a MultiTimbral unit, then each one of its
Parts may sound Note Ons on its own channel. The Part that sounds a particular Note On message is
the one assigned to the message's MIDI channel.

Status

0x90 to 0x9F where the low nibble is the MIDI channel.

Data

Two data bytes follow the Status.

The first data is the note number. There are 128 possible notes on a MIDI device, numbered 0 to 127
(where Middle C is note number 60). This indicates which note should be played.

The second data byte is the velocity, a value from 0 to 127. This indicates with how much force the
note should be played (where 127 is the most force). It's up to a MIDI device how it uses velocity
information. Often velocity is be used to tailor the VCA attack time and/or attack level (and therefore
the overall volume of the note). MIDI devices that can generate Note On messages, but don't
implement velocity features, will transmit Note On messages with a preset velocity of 64.

A Note On message that has a velocity of 0 is considered to actually be a Note Off message, and the
respective note is therefore released. See the Note Off entry for a description of such. This "trick"
was created in order to take advantage of running status.

A device that recognizes MIDI Note On messages must be able to recognize both a real Note Off as
well as a Note On with 0 velocity (as a Note Off). There are many devices that generate real Note
Offs, and many other devices that use Note On with 0 velocity as a substitute.

Errata

In theory, every Note On should eventually be followed by a respective Note Off message (ie, when
it's time to stop the note from sounding). Even if the note's sound fades out (due to some VCA
envelope decay) before a Note Off for this note is received, at some later point a Note Off should be
received. For example, if a MIDI device receives the following Note On:

0x90 0x3C 0x40 Note On/chan 0, Middle C, velocity could be anything except 0

Then, a respective Note Off should subsequently be received at some time, as so:

0x80 0x3C 0x40 Note Off/chan 0, Middle C, velocity could be anything

Instead of the above Note Off, a Note On with 0 velocity could be substituted as so:

0x90 0x3C 0x00 Really a Note Off/chan 0, Middle C, velocity must be 0

If a device receives a Note On for a note (number) that is already playing (ie, hasn't been turned off
yet), it is up the device whether to layer another "voice" playing the same pitch, or cut off the voice
playing the preceding note of that same pitch in order to "retrigger" that note.

Aftertouch

Category: Voice

Purpose

While a particular note is playing, pressure can be applied to it. Many electronic keyboards have
pressure sensing circuitry that can detect with how much force a musician is holding down a key.
The musician can then vary this pressure, even while he continues to hold down the key (and the
note continues sounding). The Aftertouch message conveys the amount of pressure on a key at a
given point. Since the musician can be continually varying his pressure, devices that generate

Aftertouch typically send out many such messages while the musician is varying his pressure. Upon
receiving Aftertouch, many devices typically use the message to vary a note's VCA and/or VCF
envelope sustain level, or control LFO amount and/or rate being applied to the note's sound
generation circuitry. But, it's up to the device how it chooses to respond to received Aftertouch (if at
all). If the device is a MultiTimbral unit, then each one of its Parts may respond differently (or not at
all) to Aftertouch. The Part affected by a particular Aftertouch message is the one assigned to the
message's MIDI channel.

Status

0xA0 to 0xAF where the low nibble is the MIDI channel.

Data

Two data bytes follow the Status.

The first data is the note number. There are 128 possible notes on a MIDI device, numbered 0 to 127
(where Middle C is note number 60). This indicates to which note the pressure is being applied.

The second data byte is the pressure amount, a value from 0 to 127 (where 127 is the most pressure).

Errata

See the remarks under Channel Pressure.

Controller

Category: Voice

Purpose

Sets a particular controller's value. A controller is any switch, slider, knob, etc, that implements some
function (usually) other than sounding or stopping notes (ie, which are the jobs of the Note On and
Note Off messages respectively). There are 128 possible controllers on a MIDI device. These are
numbered from 0 to 127. Some of these controller numbers as assigned to particular hardware
controls on a MIDI device. For example, controller 1 is the Modulation Wheel. Other controller
numbers are free to be arbitrarily interpreted by a MIDI device. For example, a drum box may have a
slider controlling Tempo which it arbitrarily assigns to one of these free numbers. Then, when the
drum box receives a Controller message for that controller number, it can adjust its tempo. A MIDI
device need not have an actual physical control on it in order to respond to a particular controller.For
example, even though a rack-mount sound module may not have a Mod Wheel on it, the module will
likely still respond to and utilize Modulation controller messages to modify its sound. If the device is
a MultiTimbral unit, then each one of its Parts may respond differently (or not at all) to various
controller numbers. The Part affected by a particular controller message is the one assigned to the
message's MIDI channel.

Status

0xB0 to 0xBF where the low nibble is the MIDI channel.

Data

Two data bytes follow the Status.

The first data is the controller number (0 to 127). This indicates which controller is affected by the
received MIDI message.

The second data byte is the value to which the controller should be set, a value from 0 to 127.

Errata

An All Controllers Off controller message can be used to reset all controllers (that a MIDI device
implements) to default values. For example, the Mod Wheel is reset to its "off" position upon receipt
of this message.

See the list of Defined Controller Numbers for more information about particular controllers.

Program Change

Category: Voice

Purpose

To cause the MIDI device to change to a particular Program (which some devices refer to as Patch,
or Instrument, or Preset, or whatever). Most sound modules have a variety of instrumental sounds,
such as Piano, and Guitar, and Trumpet, and Flute, etc. Each one of these instruments is contained in
a Program. So, changing the Program changes the instrumental sound that the MIDI device uses
when it plays Note On messages. Of course, other MIDI messages also may modify the current
Program's (ie, instrument's) sound. But, the Program Change message actually selects which
instrument currently plays. There are 128 possible program numbers, from 0 to 127. If the device is a
MultiTimbral unit, then it usually can play 16 "Parts" at once, each receiving data upon its own
MIDI channel. This message will then change the instrument sound for only that Part which is set to
the message's MIDI channel.

For MIDI devices that don't have instrument sounds, such as a Reverb unit which may have several
Preset "room algorithms" stored, the Program Change message is often used to select which Preset to
use. As another example, a drum box may use Program Change to select a particular rhythm pattern
(ie, drum beat).

Status

0xC0 to 0xCF where the low nibble is the MIDI channel.

Data

One data byte follows the status. It is the program number to change to, a number from 0 to 127.

Errata

On MIDI sound modules (ie, whose Programs are instrumental sounds), it became desirable to define
a standard set of Programs in order to make sound modules more compatible. This specification is
called General MIDI Standard.

Just like with MIDI channels 0 to 15 being displayed to a musician as channels 1 to 16, many MIDI

devices display their Program numbers starting from 1 (even though a Program number of 0 in a
Program Change message selects the first program in the device). On the other hand, this approach
was never standardized, and some devices use vastly different schemes for the musician to select a
Program. For example, some devices require the musician to specify a bank of Programs, and then
select one within the bank (with each bank typically containing 8 to 10 Programs). So, the musician
might specify the first Program as being bank 1, number 1. Nevertheless, a Program Change of
number 0 would select that first Program.

Channel Pressure

Category: Voice

Purpose

While notes are playing, pressure can be applied to all of them. Many electronic keyboards have
pressure sensing circuitry that can detect with how much force a musician is holding down keys. The
musician can then vary this pressure, even while he continues to hold down the keys (and the notes
continue sounding). The Channel Pressure message conveys the amount of overall pressure on the
keys at a given point. Since the musician can be continually varying his pressure, devices that
generate Channel Pressure typically send out many such messages while the musician is varying his
pressure. Upon receiving Channel Pressure, many devices typically use the message to vary all of the
sounding notes' VCA and/or VCF envelope sustain levels, or control LFO amount and/or rate being
applied to the notes' sound generation circuitry. But, it's up to the device how it chooses to respond to
received Channel Pressure (if at all). If the device is a MultiTimbral unit, then each one of its Parts
may respond differently (or not at all) to Channel Pressure. The Part affected by a particular Channel
Pressure message is the one assigned to the message's MIDI channel.

Status

0xD0 to 0xDF where the low nibble is the MIDI channel.

Data

One data byte follows the Status. It is the pressure amount, a value from 0 to 127 (where 127 is the
most pressure).

Errata

What's the difference between AfterTouch and Channel Pressure? Well, AfterTouch messages are for
individual keys (ie, an Aftertouch message only affects that one note whose number is in the
message). Every key that you press down generates its own AfterTouch messages. If you press on
one key harder than another, then the one key will generate AfterTouch messages with higher values
than the other key. The net result is that some effect will be applied to the one key more than the
other key. You have individual control over each key that you play. With Channel Pressure, one
message is sent out for the entire keyboard. So, if you press one key harder than another, the module
will average out the difference, and then just pretend that you're pressing both keys with the exact
same pressure. The net result is that some effect gets applied to all sounding keys evenly. You don't
have individual control per each key. A controller normally uses either Channel Pressure or
AfterTouch, but usually not both. Most MIDI controllers don't generate AfterTouch because that
requires a pressure sensor for each individual key on a MIDI keyboard, and this is an expensive
feature to implement. For this reason, many cheaper units implement Channel Pressure instead of

Aftertouch, as the former only requires one sensor for the entire keyboard's pressure. Of course, a
device could implement both Aftertouch and Channel Pressure, in which case the Aftertouch
messages for each individual key being held are generated, and then the average pressure is
calculated and sent as Channel Pressure.

Pitch Wheel

Category: Voice

Purpose

To set the Pitch Wheel value. The pitch wheel is used to slide a note's pitch up or down in cents (ie,
fractions of a half-step). If the device is a MultiTimbral unit, then each one of its Parts may respond
differently (or not at all) to Pitch Wheel. The Part affected by a particular Pitch Wheel message is the
one assigned to the message's MIDI channel.

Status

0xE0 to 0xEF where the low nibble is the MIDI channel.

Data

Two data bytes follow the status. The two bytes should be combined together to form a 14-bit value.
The first data byte's bits 0 to 6 are bits 0 to 6 of the 14-bit value. The second data byte's bits 0 to 6
are really bits 7 to 13 of the 14-bit value. In other words, assuming that a C program has the first
byte in the variable First and the second data byte in the variable Second, here's how to combine
them into a 14-bit value (actually 16-bit since most computer CPUs deal with 16-bit, not 14-bit,
integers):

unsigned short CombineBytes(unsigned char First, unsigned char Second)
{
unsigned short _14bit;

_14bit = (unsigned short)Second;
_14bit<<=7;
_14bit|=(unsigned short)First;
return(_14bit);
}

A combined value of 0x2000 is meant to indicate that the Pitch Wheel is centered (ie, the sounding
notes aren't being transposed up or down). Higher values transpose pitch up, and lower values
transpose pitch down.

Errata

The Pitch Wheel range is usually adjustable by the musician on each MIDI device. For example,
although 0x2000 is always center position, on one MIDI device, a 0x3000 could transpose the pitch
up a whole step, whereas on another device that may result in only a half step up. The GM spec
recommends that MIDI devices default to using the entire range of possible Pitch Wheel message
values (ie, 0x0000 to 0x3FFF) as +/- 2 half steps transposition (ie, 4 half-steps total range). The Pitch
Wheel Range (or Sensitivity) is adjusted via an RPN controller message.

System Exclusive

Category: System Common

Purpose

Used to send some data that is specific to a MIDI device, such as a dump of its patch memory or
sequencer data or waveform data. Also, SysEx may be used to transmit information that is particular
to a device. For example, a SysEx message might be used to set the feedback level for an operator in
an FM Synthesis device. This information would be useless to a sample playing device. On the other
hand, virtually all devices respond to Modulation Wheel control, for example, so it makes sense to
have a defined Modulation Controller message that all manufacturers can support for that purpose.

Status

Begins with 0xF0. Ends with a 0xF7 status (ie, after the data bytes).

Data

There can be any number of data bytes inbetween the initial 0xF0 and the final 0xF7. The most
important is the first data byte (after the 0xF0), which should be a Manufacturer's ID.

Errata

Virtually every MIDI device defines the format of its own set of SysEx messages (ie, that only it
understands). The only common ground between the SysEx messages of various models of MIDI
devices is that all SysEx messages must begin with a 0xF0 status and end with a 0xF7 status.In other
words, this is the only MIDI message that has 2 Status bytes, one at the start and the other at the end.
Inbetween these two status bytes, any number of data bytes (all having bit #7 clear, ie, 0 to 127
value) may be sent. That's why SysEx needs a 0xF7 status byte at the end; so that a MIDI device will
know when the end of the message occurs, even if the data within the message isn't understood by
that device (ie, the device doesn't know exactly how many data bytes to expect before the 0xF7).

Usually, the first data byte (after the 0xF0) will be a defined Manufacturer's ID. The IMA has
assigned particular values of the ID byte to various manufacturers, so that a device can determine
whether a SysEx message is intended for it. For example, a Roland device expects an ID byte of
0x41. If a Roland device receives a SysEx message whose ID byte isn't 0x41, then the device ignores
all of the rest of the bytes up to and including the final 0xF7 which indicates that the SysEx message
is finished.

The purpose of the remaining data bytes, however many there may be, are determined by the
manufacturer of a product. Typically, manufacturers follow the Manufacturer ID with a Model
Number ID byte so that a device can not only determine that it's got a SysEx message for the correct
manufacturer, but also has a SysEx message specifically for this model. Then, after the Model ID
may be another byte that the device uses to determine what the SysEx message is supposed to be for,
and therefore, how many more data bytes follow. Some manufacturers have a checksum byte,
(usually right before the 0xF7) which is used to check the integrity of the message's transmission.

The 0xF7 Status byte is dedicated to marking the end of a SysEx message. It should never occur
without a preceding 0xF0 Status. In the event that a device experiences such a condition (ie, maybe
the MIDI cable was connected during the transmission of a SysEx message), the device should ignore
the 0xF7.

Furthermore, although the 0xF7 is supposed to mark the end of a SysEx message, in fact, any status
(except for Realtime Category messages) will cause a SysEx message to be considered "done". For
example, if a 0x90 happened to be sent sometime after a 0xF0 (but before the 0xF7), then the SysEx
message would be considered done at that point. It should be noted that, like all System Common
messages, SysEx cancels any current running status. In other words, the next Voice Category
message (after the SysEx message) must begin with a Status.

Here are the assigned Manufacturer ID numbers:

Sequential Circuits 1

Big Briar 2

Octave / Plateau 3

Moog 4

Passport Designs 5

Lexicon 6

Kurzweil 7

Fender 8

Gulbransen 9

Delta Labs 0x0A

Sound Comp. 0x0B

General Electro 0x0C

Techmar 0x0D

Matthews Research 0x0E

Oberheim 0x10

PAIA 0x11

Simmons 0x12

Gentle Electric 0x13

Fairlight 0x14

Peavey 0x1B

JL Cooper 0x15

Lowery 0x16

Lin 0x17

Emu 0x18

Bon Tempi 0x20

S.I.E.L. 0x21

SyntheAxe 0x23

Hohner 0x24

Crumar 0x25

Solton 0x26

Jellinghaus Ms 0x27

CTS 0x28

PPG 0x29

Elka 0x2F

Kawai 0x40

Roland 0x41

Korg 0x42

Yamaha 0x43

Casio 0x44

Akai 0x45

The following 2 IDs are dedicated to Universal SysEx messages (ie, SysEx messages that products
from numerous manufacturers may want to utilize). Since SysEx is the only defined MIDI message
that can have a length longer than 3 bytes, it became a candidate for using to transmit long strings of
data. For example, many manufacturers make digital samplers. It became desirable for manufacturers
to allow exchange of waveform data between each others' products. So, a standard protocol was
developed called MIDI Sample Dump Standard. (SDS). Of course, since waveforms typically
entail large amounts of data, SysEx messages (ie, containing over a hundred bytes each) seemed to
be the most suitable vehicle to transmit the data over MIDI. But, it was decided not to use a
particular manufacturer's ID. So, a universal ID was created. There's a universal ID meant for
realtime messages (ie, ones that need to be responded to immediately), and one for non-realtime (ie,
ones which can be processed when the device gets around to it).

RealTime ID 0x7F

Non-RealTime ID 0x7E

A general template for these two IDs was defined. After the ID byte is a :hp1.SysEx Channel:ehp1.
byte. This could be from 0 to 127 for a total of 128 SysEx channels. So, although "normal" SysEx
messages have no MIDI channel like Voice Category messages do, a Universal SysEx message can
be sent on one of 128 SysEx channels. This allows the musician to set various devices to ignore
certain Universal SysEx messages (ie, if the device allows the musician to set its Base SysEx
Channel. Most devices just set their Base Sysex channel to the same number as the Base Channel for
Voice Category messages). On the other hand, a SysEx channel of 127 is actually meant to tell the
device to "disregard the channel and pay attention to this message regardless". After the SysEx
channel, the next two bytes are Sub IDs which tell what the SysEx is for.

Besides the SDS messages (covered later in the SDS section), there are two other defined Universal
Messages:

GM System Enable/Disable

This enables or disables the GM Sound module or GM Patch Set in a device. Some devices have
built-in GM modules or GM Patch Sets in addition to non-GM Patch Sets or non-GM modes of
operation. When GM is enabled, it replaces any non-GM Patch Set or non-GM mode. This allows a
device to have modes or Patch Sets that go beyond the limits of GM, and yet, still have the capability
to be switched into a GM-compliant mode when desirable.

 0xF0 SysEx

 0x7E Non-Realtime

 0x7F The SysEx channel. Could be from 0x00 to 0x7F.

 Here we set it to "disregard channel".

 0x09 Sub-ID -- GM System Enable/Disable

 0xNN Sub-ID2 -- NN=00 for disable, NN=01 for enable

 0xF7 End of SysEx

Master Volume

This adjusts a device's master volume. Remember that in a multitimbral device, the Volume
controller messages are used to control the volumes of the individual Parts. So, we need some
message to control Master Volume. Here it is.

 0xF0 SysEx

 0x7F Realtime

 0x7F The SysEx channel. Could be from 0x00 to 0x7F.

 Here we set it to "disregard channel".

 0x04 Sub-ID -- Device Control

 0x01 Sub-ID2 -- Master Volume

 0xLL Bits 0 to 6 of a 14-bit volume

 0xMM Bits 7 to 13 of a 14-bit volume

 0xF7 End of SysEx

A manufacturer must get a registered ID from the IMA if he wants to define his own SysEx
messages, or use the following:

Educational Use 0x7D

This ID is for educational or development use only, and should never appear in a commercial design.

On the other hand, it is permissible to use another manufacturer's defined SysEx message(s) in your
own products. For example, if the Roland S-770 has a particular SysEx message that you could use
verbatim in your own design, you're free to use that message (and therefore the Roland ID in it). But,
you're not allowed to transmit a mutated version of any Roland message with a Roland ID. Only

Roland can develop new messages that contain a Roland ID.

MTC Quarter Frame Message

Category: System Common

Purpose

Some master device that controls sequence playback sends this timing message to keep a slave
device in sync with the master.

Status

0xF1

Data

One data byte follows the Status. It's the time code value, a number from 0 to 127.

Errata

This is one of the MIDI Time Code (MTC) series of messages. See MIDI Time Code.

Song Position Pointer

Category: System Common

Purpose

Some master device that controls sequence playback sends this message to force a slave device to
cue the playback to a certain point in the song/sequence. In other words, this message sets the
device's "Song Position". This message doesn't actually start the playback. It just sets up the device to
be "ready to play" at a particular point in the song.

Status

0xF2

Data

Two data bytes follow the status. Just like with the Pitch Wheel, these two bytes are combined into a
14-bit value. (See Pitch Wheel remarks). This 14-bit value is the MIDI Beat upon which to start the
song. Songs are always assumed to start on a MIDI Beat of 0. Each MIDI Beat spans 6 MIDI Clocks.
In other words, each MIDI Beat is a 16th note (since there are 24 MIDI Clocks in a quarter note).

Errata

Example: If a Song Position value of 8 is received, then a sequencer (or drum box) should cue
playback to the third quarter note of the song. (8 MIDI beats * 6 MIDI clocks per MIDI beat = 48
MIDI Clocks. Since there are 24 MIDI Clocks in a quarter note, the first quarter occurs on a time of

0 MIDI Clocks, the second quarter note occurs upon the 24th MIDI Clock, and the third quarter note
occurs on the 48th MIDI Clock).

Often, the slave device has its playback tempo synced to the master via MIDI Clock. See Syncing
Sequence Playback.

Song Select

Category: System Common

Purpose

Some master device that controls sequence playback sends this message to force a slave device to set
a certain song for playback (ie, sequencing).

Status

0xF3

Data

One data byte follows the status. It's the song number, a value from 0 to 127.

Errata

Most devices display "song numbers" starting from 1 instead of 0. Some devices even use different
labeling systems for songs, ie, bank 1, number 1 song. But, a Song Select message with song number
0 should always select the first song.

When a device receives a Song Select message, it should cue the new song at MIDI Beat 0 (ie, the
very beginning of the song), unless a subsequent Song Position Pointer message is received for a
different MIDI Beat. In other words, the device resets its "Song Position" to 0.

Often, the slave device has its playback tempo synced to the master via MIDI Clock. See Syncing
Sequence Playback.

Tune Request

Category: System Common

Purpose

The device receiving this should perform a tuning calibration.

Status

0xF6

Data

None

Errata

Mostly used for sound modules with analog oscillator circuits.

MIDI Clock

Category: System Realtime

Purpose

Some master device that controls sequence playback sends this timing message to keep a slave
device in sync with the master. A MIDI Clock message is sent at regular intervals (based upon the
master's Tempo) in order to accomplish this.

Status

0xF8

Data

None

Errata

There are 24 MIDI Clocks in every quarter note. (12 MIDI Clocks in an eighth note, 6 MIDI Clocks
in a 16th, etc). Therefore, when a slave device counts down the receipt of 24 MIDI Clock messages,
it knows that one quarter note has passed. When the slave counts off another 24 MIDI Clock
messages, it knows that another quarter note has passed. Etc. Of course, the rate that the master sends
these messages is based upon the master's tempo. For example, for a tempo of 120 BPM (ie, there are
120 quarter notes in every minute), the master sends a MIDI clock every 20833 microseconds. (ie,
There are 1,000,000 microseconds in a second. Therefore, there are 60,000,000 microseconds in a
minute. At a tempo of 120 BPM, there are 120 quarter notes per minute. There are 24 MIDI clocks in
each quarter note. Therefore, there should be 24 * 120 MIDI Clocks per minute. So, each MIDI
Clock is sent at a rate of 60,000,000/(24 * 120) microseconds).

A device might receive a Song Select message to cue a specific song to play (out of several songs), a
Song Position Pointer message to cue that song to start on a particular beat, a MIDI Continue in
order to start playback from that beat, periodic MIDI Clocks in order to keep the playback in sync
with another sequencer, and finally a MIDI Stop to halt playback. See Syncing Sequence Playback.

MIDI Start

Category: System Realtime

Purpose

Some master device that controls sequence playback sends this message to make a slave device start
playback of some song/sequence from the beginning (ie, MIDI Beat 0).

Status

0xFA

Data

None

Errata

A MIDI Start always begins playback at MIDI Beat 0 (ie, the very beginning of the song). So, when
a slave device receives a MIDI Start, it automatically resets its "Song Position" to 0. If the device
needs to start playback at some other point (either set by a previous Song Position Pointer message,
or manually by the musician), then MIDI Continue is used instead of MIDI Start.

Often, the slave device has its playback tempo synced to the master via MIDI Clock. See Syncing
Sequence Playback.

MIDI Continue

Category: System Realtime

Purpose

Some master device that controls sequence playback sends this message to make a slave device
resume playback from its current "Song Position". The current Song Position is the point when the
song/sequence was previously stopped, or previously cued with a Song Position Pointer message.

Status

0xFB

Data

None

Errata

Often, the slave device has its playback tempo synced to the master via MIDI Clock. See Syncing
Sequence Playback.

MIDI Stop

Category: System Realtime

Purpose

Some master device that controls sequence playback sends this message to make a slave device stop
playback of a song/sequence.

Status

0xFC

Data

None

Errata

When a device receives a MIDI Stop, it should keep track of the point at which it stopped playback
(ie, its stopped "Song Position"), in the anticipation that a MIDI Continue might be received next.

Often, the slave device has its playback tempo synced to the master via MIDI Clock. See Syncing
Sequence Playback.

Active Sense

Category: System Realtime

Purpose

A device sends out an Active Sense message (at least once) every 300 milliseconds if there has been
no other activity on the MIDI buss, to let other devices know that there is still a good MIDI
connection between the devices.

Status

0xFE

Data

None

Errata

When a device receives an Active Sense message (from some other device), it should expect to
receive additional Active Sense messages at a rate of one approximately every 300 milliseconds,
whenever there is no activity on the MIDI buss during that time. (Of course, if there are other MIDI
messages happening at least once every 300 mSec, then Active Sense won't ever be sent. An Active
Sense only gets sent if there is a 300 mSec "moment of silence" on the MIDI buss. You could say
that a device that sends out Active Sense "gets nervous" if it has nothing to do for over 300 mSec,
and so sends an Active Sense just for the sake of reassuring other devices that this device still exists).
If a message is missed (ie, 0xFE nor any other MIDI message is received for over 300 mSec), then a
device assumes that the MIDI connection is broken, and turns off all of its playing notes (which were
turned on by incoming Note On messages, versus ones played on the local keyboard by a musician).
Of course, if a device never receives an Active Sense message to begin with, it should not expect
them at all. So, it takes one "nervous" device to start the process by initially sending out an Active
Sense message to the other connected devices during a 300 mSec moment of silence on the MIDI
bus.

This is an optional feature that only a few devices implement (ie, notably Roland gear). Many

devices don't ever initiate this minimal "safety" feature.

Here's a flowchart for implementing Active Sense. It assumes that the device has a hardware timer
that ticks once every millisecond. A variable named Timeout is used to count the passing
milliseconds. Another variable named Flag is set when the device receives an Active Sense message
from another device, and therefore expects to receive further Active Sense messages.

The logic for active sense detection

Reset

Category: System Realtime

Purpose

The device receiving this should reset itself to a default state, usually the same state as when the
device was turned on. Often, this means to turn off all playing notes, turn the local keyboard on, clear
running status, set Song Position to 0, stop any timed playback (of a sequence), and perform any
other standard setup unique to the device. Also, a device may choose to kick itself into Omni On,
Poly mode if it has no facilities for allowing the musician to store a default mode.

Status

0xFF

Data

None

Errata

A Reset message should never be sent automatically by any MIDI device. Rather, this should only be
sent when a musician specifically tells a device to do so.

Controller Numbers

A Controller message has a Status byte of 0xB0 to 0xBF depending upon the MIDI channel. There
are two more data bytes.

The first data byte is the Controller Number. There are 128 possible controller numbers (ie, 0 to
127). Some numbers are defined for specific purposes. Others are undefined, and reserved for future
use.

The second byte is the "value" that the controller is to be set to.

Most controllers implement an effect even while the MIDI device is generating sound, and the effect
will be immediately noticeable. In other words, MIDI controller messages are meant to implement
various effects by a musician while he's operating the device.

If the device is a MultiTimbral module, then each one of its Parts may respond differently (or not at

all) to a particular controller number. Each Part usually has its own setting for every controller
number, and the Part responds only to controller messages on the same channel as that to which the
Part is assigned. So, controller messages for one Part do not affect the sound of another Part even
while that other Part is playing.

Some controllers are continuous controllers, which simply means that their value can be set to any
value within the range from 0 to 16,384 (for 14-bit coarse/fine resolution) or 0 to 127 (for 7-bit,
coarse resolution). Other controllers are switches whose state may be either on or off. Such
controllers will usually generate only one of two values; 0 for off, and 127 for on. But, a device
should be able to respond to any received switch value from 0 to 127. If the device implements only
an "on" and "off" state, then it should regard values of 0 to 63 as off, and any value of 64 to 127 as
on.

Many (continuous) controller numbers are coarse adjustments, and have a respective fine adjustment
controller number. For example, controller #1 is the coarse adjustment for Modulation Wheel. Using
this controller number in a message, a device's Modulation Wheel can be adjusted in large (coarse)
increments (ie, 128 steps). If finer adjustment (from a coarse setting) needs to be made, then
controller #33 is the fine adjust for Modulation Wheel. For controllers that have coarse/fine pairs of
numbers, there is thus a 14-bit resolution to the range. In other words, the Modulation Wheel can be
set from 0x0000 to 0x3FFF (ie, one of 16,384 values). For this 14-bit value, bits 7 to 13 are the
coarse adjust, and bits 0 to 6 are the fine adjust. For example, to set the Modulation Wheel to
0x2005, first you have to break it up into 2 bytes (as is done with Pitch Wheel messages). Take bits 0
to 6 and put them in a byte that is the fine adjust. Take bits 7 to 13 and put them right-justified in a
byte that is the coarse adjust. Assuming a MIDI channel of 0, here's the coarse and fine Mod Wheel
controller messages that a device would receive (coarse adjust first):

0xB0 0x01 0x40

Controller on chan 0, Mod Wheel coarse, bits 7 to 13 of 14-bit

value right-justified (with high bit clear).

0xB0 0x33 0x05

Controller on chan 0, Mod Wheel fine, bits 0 to 6 of 14-bit

value (with high bit clear).

Some devices do not implement fine adjust counterparts to coarse controllers. For example, some
devices do not implement controller #33 for Mod Wheel fine adjust. Instead the device only
recognizes and responds to the Mod Wheel coarse controller number (#1). It is perfectly acceptable
for devices to only respond to the coarse adjustment for a controller if the device desires 7-bit (rather
than 14-bit) resolution. The device should ignore that controller's respective fine adjust message. By
the same token, if it's only desirable to make fine adjustments to the Mod Wheel without changing its
current coarse setting (or vice versa), a device can be sent only a controller #33 message without a
preceding controller #1 message (or vice versa). Thus, if a device can respond to both coarse and fine
adjustments for a particular controller (ie, implements the full 14-bit resolution), it should be able to
deal with either the coarse or fine controller message being sent without its counterpart following.
The same holds true for other continuous (ie, coarse/fine pairs of) controllers.

Here's a list of the defined controllers. To the left is the controller number (ie, how the MIDI

Controller message refers to a particular controller), and on the right is its name (ie, how a human
might refer to the controller). To get more information about what a particular controller does, click
on its controller name to bring up a description. Each description shows the controller name and
number, what the range is for the third byte of the message (ie, the "value" data byte), and what the
controller does. For controllers that have separate coarse and fine settings, both controller numbers
are shown.

MIDI devices should use these controller numbers for their defined purposes, as much as possible.
For example, if the device is able to respond to Volume controller (coarse adjustment), then it should
expect that to be controller number 7. It should not use Portamento Time controller messages to
adjust volume. That wouldn't make any sense. Other controllers, such as Foot Pedal, are more
general purpose. That pedal could be controlling the tempo on a drum box, for example. But
generally, the Foot Pedal shouldn't be used for purposes that other controllers already are dedicated
to, such as adjusting Pan position. If there is not a defined controller number for a particular, needed
purpose, a device can use the General Purpose Sliders and Buttons, or NRPN for device specific
purposes. The device should use controller numbers 0 to 31 for coarse adjustments, and controller
numbers 32 to 63 for the respective fine adjustments.

Defined Controllers

0 Bank Select

1 Modulation Wheel (coarse)

2 Breath controller (coarse)

4 Foot Pedal (coarse)

5 Portamento Time (coarse)

6 Data Entry (coarse)

7 Volume (coarse)

8 Balance (coarse)

10 Pan position (coarse)

11 Expression (coarse)

12 Effect Control 1 (coarse)

13 Effect Control 2 (coarse)

16 General Purpose Slider 1

17 General Purpose Slider 2

18 General Purpose Slider 3

19 General Purpose Slider 4

32 Bank Select (fine)

33 Modulation Wheel (fine)

34 Breath controller (fine)

36 Foot Pedal (fine)

37 Portamento Time (fine)

38 Data Entry (fine)

39 Volume (fine)

40 Balance (fine)

42 Pan position (fine)

43 Expression (fine)

44 Effect Control 1 (fine)

45 Effect Control 2 (fine)

64 Hold Pedal (on/off)

65 Portamento (on/off)

66 Sustenuto Pedal (on/off)

67 Soft Pedal (on/off)

68 Legato Pedal (on/off)

69 Hold 2 Pedal (on/off)

70 Sound Variation

71 Sound Timbre

72 Sound Release Time

73 Sound Attack Time

74 Sound Brightness

75 Sound Control 6

76 Sound Control 7

77 Sound Control 8

78 Sound Control 9

79 Sound Control 10

80 General Purpose Button 1 (on/off)

81 General Purpose Button 2 (on/off)

82 General Purpose Button 3 (on/off)

83 General Purpose Button 4 (on/off)

91 Effects Level

92 Tremulo Level

93 Chorus Level

94 Celeste Level

95 Phaser Level

96 Data Button increment

97 Data Button decrement

98 Non-registered Parameter (coarse)

99 Non-registered Parameter (fine)

100 Registered Parameter (coarse)

101 Registered Parameter (fine)

120 All Sound Off

121 All Controllers Off

122 Local Keyboard (on/off)

123 All Notes Off

124 Omni Mode Off

125 Omni Mode On

126 Mono Operation

127 Poly Operation

Bank Select

Number: 0 (coarse) 32 (fine)

Affects:

Some MIDI devices have more than 128 Programs (ie, Patches, Instruments, Preset, etc). MIDI
Program Change messages only support switching between 128 programs. So, Bank Select Controller
(sometimes called Bank Switch) is sometimes used to allow switching between groups of 128
programs. For example, let's say that a device has 512 Programs. It may divide these into 4 banks of
128 programs apiece. So, if you want program #129, that would actually be the first program within
the second bank. You would send a Bank Select Controller to switch to the second bank (ie, the first
bank is #0), and then follow with a Program Change to select the first Program in this bank. If a
MultiTimbral device, then each Part usually can be set to its own Bank/Program.

On MultiTimbral devices that have a Drum Part, the Bank Select is sometimes used to switch
between "Drum Kits".

NOTE: When a Bank Select is received, the MIDI module doesn't actually change to a patch in the
new bank. Rather, the Bank Select value is simply stored by the MIDI module without changing the
current patch. Whenever a subsequent Program Change is received, the stored Bank Select is then
utilized to switch to the specified patch in the new bank. For this reason, Bank Select must be sent
before a Program Change, when you desire changing to a patch in a different bank. (Of course, if

before a Program Change, when you desire changing to a patch in a different bank. (Of course, if
you simply wish to change to another patch in the same bank, there is no need to send a Bank Select
first).

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF.

NOTE: Most devices use the Coarse adjust (#0) alone to switch banks since most devices don't have
more than 128 banks (of 128 Patches each).

MOD Wheel

Number: 1 (coarse) 33 (fine)

Affects:

Sets the MOD Wheel to a particular value. Usually, MOD Wheel introduces some sort of (LFO)
vibrato effect. If a MultiTimbral device, then each Part usually has its own MOD Wheel setting.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is no modulation effect.

Breath Controller

Number: 2 (coarse) 34 (fine)

Affects:

Whatever the musician sets this controller to affect. Often, this is used to control a parameter such as
what Aftertouch can. After all, breath control is a wind player's version of how to vary pressure. If a
MultiTimbral device, then each Part usually has its own Breath Controller setting.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is minimum breath pressure.

Foot Pedal

Number: 4 (coarse) 36 (fine)

Affects:

Whatever the musician sets this controller to affect. Often, this is used to control the a parameter
such as what Aftertouch can. This foot pedal is a continuous controller (ie, potentiometer). If a
MultiTimbral device, then each Part usually has its own Foot Pedal value.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is minimum effect.

Portamento Time

Number: 5 (coarse) 37 (fine)

Affects:

The rate at which portamento slides the pitch between 2 notes. If a MultiTimbral device, then each
Part usually has its own Portamento Time.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is slowest rate.

Data Entry Slider

Number: 6 (coarse) 38 (fine)

The value of some Registered or Non-Registered Parameter. Which parameter is affected depends
upon a preceding RPN or NRPN message (which itself identifies the parameter's number).

On some devices, this slider may not be used in conjunction with RPN or NRPN messages. Instead
the musician can set the slider to control a single parameter directly, often a parameter such as what
Aftertouch can control.

If a MultiTimbral device, then each Part usually has its own RPN and NRPN settings, and Data
Entry slider setting.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is minimum effect.

Volume

Number: 7 (coarse) 39 (fine)

Affects:

The device's volume level. If a MultiTimbral device, then each Part has its own volume. In this case,
a device's master volume may be controlled by another method such as the Univeral SysEx Master
Volume message, or take its volume from one of the Parts, or be controlled by a General Purpose
Slider controller.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is no volume at all.

NOTE: Most all devices ignore the Fine adjust (#39) for Volume, and just implement Coarse adjust
(#7) because 14-bit resolution isn't needed for this. In this case, maximum is 127 and off is 0.

Balance

Number: 8 (coarse) 40 (fine)

Affects:

The device's stereo balance (assuming that the device has stereo audio outputs). If a MultiTimbral
device, then each Part usually has its own Balance. This is generally when Balance becomes useful,
because then you can use Pan, Volume, and Balance controllers to internally mix all of the Parts to
the device's stereo outputs. Typically, Balance would be used on a Part that had stereo elements
(where you wish to adjust the volume of the stereo elements without changing their pan positions),
whereas Pan is more appropriate for a Part that is strictly a "mono instrument".

Value Range:

14-bit coarse/fine resolution. 16,384 possible setting, 0x0000 to 0x3FFF where 0x2000 is center
balance, 0x0000 emphasizes the left elements mostly, and 0x3FFF emphasizes the right elements
mostly. Some devices only respond to coarse adjust (128 settings) where 64 is center, 0 is leftmost
emphsis, and 127 is rightmost emphasis.

NOTE: Most all devices ignore the Fine adjust (#40) for Balance, and just implement Coarse adjust
(#8) because 14-bit resolution isn't needed for this.

Pan

Number: 10 (coarse) 42 (fine)

Affects:

Where within the stereo field the device's sound will be placed (assuming that it has stereo audio
outputs). If a MultiTimbral device, then each Part usually has its own pan position. This is generally
when Pan becomes useful, because then you can use Pan, Volume, and Balance controllers to
internally mix all of the Parts to the device's stereo outputs.

Value Range:

14-bit coarse/fine resolution. 16,384 possible positions, 0x0000 to 0x3FFF where 0x2000 is center
position, 0x0000 is hard left, and 0x3FFF is hard right. Some devices only respond to coarse adjust
(128 positions) where 64 is center, 0 is hard left, and 127 is hard right.

NOTE: Most all devices ignore the Fine adjust (#42) for Pan, and just implement Coarse adjust
(#10) because 14-bit resolution isn't needed for this.

Expression

Number: 11 (coarse) 43 (fine)

Affects:

This is a percentage of Volume (ie, as set by Volume Controller). In other words, Expression divides
the current volume into 16,384 steps (or 128 if 8-bit instead of 14-bit resolution is used). Volume
Controller is used to set the overall volume of the entire musical part, whereas Expression is used for
doing crescendos and decrescendos. By having both a master Volume and sub-Volume (ie,
Expression), it makes possible adjusting the overall volume of a part without having to adjust every
single MIDI message comprising a crescendo or decrescendo. When Expression is at 100% (ie,
maximum or 0x3FFF), then the volume represents the true setting of Volume Controller. Lower
values of Expression begin to subtract from the volume. When Expression is 0% (ie, 0x0000), then
volume is off. When Expression is 50% (ie, 0x1FFF), then the volume is cut in half.

If a MultiTimbral device, then each Part usually has its own Expression level.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is minimum effect.

NOTE: Most all devices ignore the Fine adjust (#43) for Expression, and just implement Coarse
adjust (#11) because 14-bit resolution isn't needed for this. In this case, maximum is 127, 50% is 64,
and off is 0. So assume that a channel's volume is 100. After receiving an Expression Controller of
value 64, the volume is reduced to 50 (ie, 50% of 100). After receiving another Expression of 127,
the volume is restored to 100. Now, assume the volume is changed (via Volume Controller) to 80.
After receiving an Expression Controller of value 64, the volume is reduced to 40 (ie, 50% of 80).
After receiving another Expression of 127, the volume is restored to 80.

Effect Control 1

Number: 12 (coarse) 44 (fine)

Affects:

This can control any parameter relating to an effects device, such as the Reverb Decay Time for a
reverb unit built into a GM sound module.

NOTE: There are separate controllers for setting the Levels (ie, volumes) of Reverb, Chorus, Phase
Shift, and other effects.

If a MultiTimbral device, then each Part usually has its own Effect Control 1.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is minimum effect.

Effect Control 2

Number: 13 (coarse) 45 (fine)

Affects:

This can control any parameter relating to an effects device, such as the Reverb Decay Time for a
reverb unit built into a GM sound module.

NOTE: There are separate controllers for setting the Levels (ie, volumes) of Reverb, Chorus, Phase
Shift, and other effects.

If a MultiTimbral device, then each Part usually has its own Effect Control 2.

Value Range:

14-bit coarse/fine resolution. 0x0000 to 0x3FFF where 0 is minimum effect.

General Purpose Slider

Number: 16, 17, 18, 19

Affects:

Whatever the musician sets this controller to affect. There are 4 General Purpose Sliders, with the
above controller numbers. Often, these are used to control parameters such as what Aftertouch can.
If a MultiTimbral device, then each Part usually has its own responses to the 4 General Purpose
Sliders. Note that these sliders don't have a fine adjustment.

Value Range:

0x00 to 0x7F where 0 is minimum effect.

Hold Pedal

Number: 64

Affects:

When on, this holds (ie, sustains) notes that are playing, even if the musician releases the notes (ie,
the Note Off effect is postponed until the musician switches the Hold Pedal off). If a MultiTimbral
device, then each Part usually has its own Hold Pedal setting.

NOTE: When on, this also postpones any All Notes Off controller message on the same channel.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Portamento

Number: 65

Affects:

Whether the portamento effect is on or off. If a MultiTimbral device, then each Part usually has its
own portamento on/off setting.

NOTE: There is another controller to set the portamento time.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Sustenuto

Number: 66

Affects:

Like the Hold Pedal controller, except this only sustains notes that are already on (ie, the device has
received Note On messages, but the respective Note Offs haven't yet arrived) when the pedal is
turned on. After the pedal is on, it continues to hold these initial notes all of the while that the pedal
is on, but during that time, all other arriving Note Ons are not held. So, this pedal implements a
"chord hold" for the notes that are sounding when this pedal is turned on. If a MultiTimbral device,
then each Part usually has its own Sustenuto setting.

NOTE: When on, this also postpones any All Notes Off controller message on the same channel for
those notes being held.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Soft Pedal

Number: 67

Affects:

When on, this lowers the volume of any notes played. If a MultiTimbral device, then each Part
usually has its own Soft Pedal setting.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Legato Pedal

Number: 68

Affects:

When on, this causes a legato effect between notes, which is usually achieved by skipping the attack
portion of the VCA's envelope. Use of this controller allows a keyboard player to better simulate the
phrasing of wind and brass players, who often play several notes with a single tonguing, or simulate
guitar pull-offs and hammer-ons (ie, where secondary notes are not picked). If a MultiTimbral
device, then each Part usually has its own Legato Pedal setting.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Hold 2 Pedal

Number: 69

Affects:

When on, this lengthens the release time of the playing notes' VCA (ie, makes the note take longer to
fade out after it's released, versus when this pedal is off). Unlike the other Hold Pedal controller, this
pedal doesn't permanently sustain the note's sound until the musician releases the pedal. Even though
the note takes longer to fade out when this pedal is on, the note may eventually fade out despite the
musician still holding down the key and this pedal. If a MultiTimbral device, then each Part usually
has its own Hold 2 Pedal setting.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Sound Variation

Number: 70

Affects:

Any parameter associated with the circuitry that produces sound. For example, if a device uses
looped digital waveforms to create sound, this controller may adjust the sample rate (ie, playback
speed), for a "tuning" control. If a MultiTimbral device, then each Part usually has its own patch
with its respective VCA, VCF, tuning, sound sources, etc, parameters that can be adjusted with this
controller.

NOTE: There are other controllers for adjusting VCA attack and release times, VCF cutoff
frequency, and other generic sound parameters.

Value Range:

0 to 127, with 0 being minimum setting.

Sound Timbre

Number: 71

Affects:

Controls the (VCF) filter's envelope levels, for a "brightness" control. If a MultiTimbral device, then
each Part usually has its own patch with its respective VCF cutoff frequency that can be adjusted
with this controller.

NOTE: There are other controllers for adjusting VCA attack and release times, and other generic
sound parameters.

Value Range:

0 to 127, with 0 being minimum setting.

Sound Release Time

Number: 72

Affects:

Controls the (VCA) amp's envelope release time, for a control over how long it takes a sound to fade
out. If a MultiTimbral device, then each Part usually has its own patch with its respective VCA
envelope that can be adjusted with this controller.

NOTE: There are other controllers for adjusting VCA attack time, VCF cutoff frequency, and other
generic sound parameters.

Value Range:

0 to 127, with 0 being minimum setting.

Sound Attack Time

Number: 73

Affects:

Controls the (VCA) amp's envelope attack time, for a control over how long it takes a sound to fade
in. If a MultiTimbral device, then each Part usually has its own patch with its respective VCA
envelope that can be adjusted with this controller.

NOTE: There are other controllers for adjusting VCA release time, VCF cutoff frequency, and other
generic sound parameters.

Value Range:

0 to 127, with 0 being minimum setting.

Sound Brightness

Number: 74

Affects:

Controls the (VCF) filter's cutoff frequency, for a "brightness" control. If a MultiTimbral device,
then each Part usually has its own patch with its respective VCF cutoff frequency that can be
adjusted with this controller.

NOTE: There are other controllers for adjusting VCA attack and release times, and other generic
sound parameters.

Value Range:

0 to 127, with 0 being minimum setting.

Sound Control 6, 7, 8, 9, 10

Number: 75, 76, 77, 78, 79

Affects:

These 5 controllers can be used to adjust any parameters associated with the circuitry that produces
sound. For example, if a device uses looped digital waveforms to create sound, one controller may
adjust the sample rate (ie, playback speed), for a "tuning" control. If a MultiTimbral device, then
each Part usually has its own patch with its respective VCA, VCF, tuning, sound sources, etc,
parameters that can be adjusted with these controllers.

NOTE: There are other controllers for adjusting VCA attack and release times, and VCF cutoff
frequency.

Value Range:

0 to 127, with 0 being minimum setting.

General Purpose Button

Number: 80, 81, 82, 83

Affects:

Whatever the musician sets this controller to affect. There are 4 General Purpose Buttons, with the
above controller numbers. This are either on or off, so they are often used to implement on/off
functions, such as a Metronome on/off switch on a sequencer. If a MultiTimbral device, then each
Part usually has its own responses to the 4 General Purpose Buttons.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

Effects Level

Number: 91

Affects:

The effects amount (ie, level) for the device. Often, this is the reverb or delay level. If a
MultiTimbral device, then each Part usually has its own effects level.

Value Range:

0 to 127, with 0 being no effect applied at all.

Tremulo Level

Number: 92

Affects:

The tremulo amount (ie, level) for the device. If a MultiTimbral device, then each Part Parts usually
has its own tremulo level.

Value Range:

0 to 127, with 0 being no tremulo applied at all.

Chorus Level

Number: 93

Affects:

The chorus effect amount (ie, level) for the device. If a MultiTimbral device, then each Part usually
has its own chorus level.

Value Range:

0 to 127, with 0 being no chorus effect applied at all.

Celeste Level

Number: 94

Affects:

The celeste (detune) amount (ie, level) for the device. If a MultiTimbral device, then each Part
usually has its own celeste level.

Value Range:

0 to 127, with 0 being no celeste effect applied at all.

Phaser Level

Number: 95

Affects:

The Phaser effect amount (ie, level) for the device. If a MultiTimbral device, then each Part usually
has its own Phaser level.

Value Range:

0 to 127, with 0 being no phaser effect applied at all.

Data Button increment

Number: 96

Affects:

Causes a Data Button to increment (ie, increase by 1) its current value. Usually, this data button's
value is being used to set some Registered or Non-Registered Parameter. Which RPN or NRPN
parameter is being affected depends upon a preceding RPN or NRPN message (which itself identifies
the parameter's number).

Value Range:

The value byte isn't used and defaults to 0.

Data Button decrement

Number: 97

Affects:

Causes a Data Buttonto decrement (ie, decrease by 1) its current value. Usually, this data button's
value is being used to set some Registered or Non-Registered Parameter. Which RPN or NRPN
parameter is being affected depends upon a preceding RPN or NRPN message (which itself identifies
the parameter's number).

Value Range:

The value byte isn't used and defaults to 0.

Registered Parameter Number (RPN)

Number: 101 (coarse) 100 (fine)

Affects:

Which parameter the Data Button Increment, Data Button Decrement, or Data Entry controllers
affect. Since RPN has a coarse/fine pair (14-bit), the number of parameters that can be registered is
16,384. That's a lot of parameters that a MIDI device could allow to be controlled over MIDI. It's up
to the IMA to assign Registered Parameter Numbers to specific functions.

Value Range:

0 to 16,384 where each value stands for a different RPN. Here are the currently registered parameter
numbers:

Pitch Bend Range (ie, Sensitivity) 0x0000

NOTE: The coarse adjustment (usually set via Data Entry 6) sets the range in semitones. The fine
adjustment (usually set via Data Entry 38) set the range in cents. For example, to adjust the pitch
wheel range to go up/down 2 semitones and 4 cents:

B0 65 00 Controller/chan 0, RPN coarse (101), Pitch Bend Range

B0 64 00 Controller/chan 0, RPN fine (100), Pitch Bend Range

B0 06 02 Controller/chan 0, Data Entry coarse, +/- 2 semitones

B0 26 04 Controller/chan 0, Data Entry fine, +/- 4 cents

Master Fine Tuning (ie, in cents) 0x0001

NOTE: Both the coarse and fine adjustments together form a 14-bit value that sets the tuning in
semitones, where 0x2000 is A440 tuning.

Master Coarse Tuning (in half-steps) 0x0002

NOTE: Setting the coarse adjustment adjusts the tuning in semitones, where 0x40 is A440 tuning.
There is no need to set a fine adjustment.

RPN Reset 0x3FFF

NOTE: No coarse or fine adjustments are applicable. This is a "dummy" parameter.

Here's the way that you use RPN. First, you decide which RPN you wish to control. Let's say that we
wish to set Master Fine Tuning on a device. That's RPN 0x0001. We need to send the device the
RPN Coarse and RPN Fine controller messages in order to tell it to affect RPN 0x0001. So, we
divide the 0x0001 into 2 bytes, the fine byte and the coarse byte. The fine byte contains bits 0 to 6 of

the 14-bit value. The coarse byte contains bits 7 to 13 of the 14-bit value, right-justified. So, here are
the RPN Coarse and Fine messages (assuming that the device is responding to MIDI channel 0):

B0 65 00 Controller/chan 0, RPN coarse (101), bits

 7 to 13 of 0x0001, right-justified (with high bit clear)

B0 64 01 Controller/chan 0, RPN fine (100), bits

 0 to 6 of 0x0001, (with high bit clear)

Now, we've just told the device that any Data Button Increment, Data Button decrement, or Data
Entry controllers it receives should affect the Master Fine Tuning. Let's say that we wish to set this
tuning to the 14-bit value 0x2000 (which happens to be centered tuning). We could use the Data
Entry (coarse and fine) controller messages as so to send that 0x2000:

B0 06 40 Controller/chan 0, Data Entry coarse (6), bits

 7 to 13 of 0x2000, right-justified (with high bit clear)

B0 26 00 Controller/chan 0, Data Entry fine (38), bits

 0 to 6 of 0x2000, (with high bit clear)

As a final example, let's say that we wish to increment the Master Fine Tuning by one (ie, to
0x2001). We could use the Data Entry messages again. Or, we could use the Data Button Increment,
which doesn't have a coarse/fine pair of controller numbers like Data Entry.

B0 60 00 Controller/chan 0, Data Button Increment (96),

 last byte is unused

Of course, if the device receives RPN messages for another parameter, then the Data Button
Increment, Data Button Decrement, and Data Entry controllers will switch to adjusting that
parameter.

RPN 0x3FFF (reset) forces the Data Button increment, Data Button decrement, and Data Entry
controllers to not adjust any RPN (ie, disables those buttons' adjustment of any RPN).

Non-Registered Parameter Number (NRPN)

Number: 99 (coarse) 98 (fine)

Affects:

Which parameter the Data Button Increment, Data Button Decrement, or Data Entry controllers
affect. Since NRPN has a coarse/fine pair (14-bit), the number of parameters that can be registered is
16,384. That's a lot of parameters that a MIDI device could allow to be controlled over MIDI. It's
entirely up to each manufacturer which parameter numbers are used for whatever purposes. These
don't have to be registered with the IMA.

Value Range:

The same scheme is used as per the Registered Parameter controller. Refer to that. By contrast, the
coarse/fine messages for NRPN for the preceding RPN example would be:

B0 63 00

B0 62 01

NOTE: Since each device can define a particular NRPN controller number to control anything, it's
possible that 2 devices may interpret the same NRPN number in different manners. Therefore, a
device should allow a musician to disable receipt of NRPN, in the event that there is a conflict
between the NRPN implementations of 2 daisy-chained devices.

All Controllers Off

Number: 121

Affects:

Resets all controllers to default states. This means that all switches (such as Hold Pedal) are turned
off, and all continuous controllers (such as Mod Wheel) are set to minimum positions. If the device
is MultiTimbral, this only affects the Part assigned to the MIDI channel upon which this message is
received.

Value Range:

The value byte isn't used and defaults to 0.

Local Keyboard on/off

Number: 122

Affects:

Turns the device's keyboard on or off locally. If off, the keyboard is disconnected from the device's
internal sound generation circuitry. So when the musician presses keys, the device doesn't trigger any
of its internal sounds. But, the keyboard still generates Note On, Note Off, Aftertouch, and Channel
Pressure messages. In this way, a musician can eliminate a situation where MIDI messages get
looped back (over MIDI cables) to the device that created those messages. Furthermore, if a device is
only going to be played remotely via MIDI, then the keyboard may be turned off in order to allow
the device to concentrate more on dealing with MIDI messages rather than scanning the keyboard for
depressed notes and varying pressure.

Value Range:

0 (to 63) is off. 127 (to 64) is on.

All Notes Off

Number: 123

Affects:

Turns off all notes that were turned on by received Note On messages, and which haven't yet been
turned off by respective Note Off messages. This message is not supposed to turn off any notes that
the musician is playing on the local keyboard. So, if a device can't distinguish between notes played
via its MIDI IN and notes played on the local keyboard, it should not implement All Notes Off.
Furthermore, if a device is in Omni On state, it should ignore this message on any channel.

NOTE: If the device's Hold Pedal controller is on, the notes aren't actually released until the Hold
Pedal is turned off. See All Sound Off controller message for turning off the sound of these notes
immediately.

Value Range:

The value byte isn't used and defaults to 0.

All Sound Off

Number: 120

Affects:

Mutes all sounding notes that were turned on by received Note On messages, and which haven't yet
been turned off by respective Note Off messages. This message is not supposed to mute any notes
that the musician is playing on the local keyboard. So, if a device can't distinguish between notes
played via its MIDI IN and notes played on the local keyboard, it should not implement All Sound
Off.

NOTE: The difference between this message and All Notes Off is that this message immediately
mutes all sound on the device regardless of whether the Hold Pedal is on, and mutes the sound
quickly regardless of any lengthy VCA release times. It's often used by sequencers to quickly mute
all sound when the musician presses "Stop" in the middle of a song.

Value Range:

The value byte isn't used and defaults to 0.

Omni Off

Number: 124

Affects:

Turns Omni off. See the discussion on MIDI Modes.

Value Range:

The value byte isn't used and defaults to 0.

NOTE: When a device receives an Omni Off message, it should automatically turn off all playing
notes.

Omni On

Number: 125

Affects:

Turns Omni on. See the discussion on MIDI Modes.

Value Range:

The value byte isn't used and defaults to 0.

NOTE: When a device receives an Omni On message, it should automatically turn off all playing
notes.

Monophonic Operation

Number: 126

Affects:

Enables Monophonic operation (thus disabling Polyphonic operation). See the discussion on MIDI
Modes.

Value Range:

If Omni is off, this Value tells how many MIDI channels the device is expected to respond to in
Mono mode. In other words, if Omni is off, this value is used to select a limited set of the 16 MIDI
channels (ie, 1 to 16) to respond to.Conversely, if Omni is on, this Value is ignored completely, and
the device only ever plays one note at a time (unless a MultiTimbral device). So, the following
discussion is only relevant if Omni Off.

If Value is 0, then the number of MIDI channels that the device will respond to simultaneously will
be equal to how many voices the device can sound simultaneously. In other words, if the device can
sound at least 16 voices simultaneously, then it can respond to Voice Category messages on all 16
channels. Of course, being Monophonic operation, the device can only sound one note at a time per
each MIDI channel. So, it can sound a note on channel 1 and channel 2 simultaneously, for example,
but can't sound 2 notes both on channel 1 simultaneously.

Of course, MultiTimbral devices completely violate the preceding theory. MultiTimbral devices
always can play polyphonically on each MIDI channel. If Value is 0, what this means is that the
device can play as many MIDI channels as it has Parts. So, if the device can play 16 of its patches
simultaneously, then it can respond to Voice Category messages on all 16 channels.

If Value is not 0 (ie, 1 to 16), then that's how many MIDI channels the device is allowed to respond

to. For example, a value of 1 would mean that the device would only be able to respond to 1 MIDI
channel. Since the device is also limited to sounding only 1 note at a time on that MIDI channel, then
the device would truly be a Monophonic instrument incapable of sounding more than one note at a
time. If a device is asked to respond to more MIDI channels than it has voices to accomodate, then it
will handle only as many MIDI channels as it has voices. For example, if an 8-voice synth, on Base
Channel 0, receives the value 16 in the Mono message, then the synth will play messages on MIDI
channels 0 to 7 and ignore messages on 8 to 15.

Again, MultiTimbral devices violate the above theory. A value of 1 would mean that the device
would only be able to respond to 1 MIDI channel (and therefore only play 1 Part), but would do so
Polyphonically. If a MultiTimbral device is asked to respond to more MIDI channels than it has Parts
to accomodate, then it will handle only as many MIDI channels as it has Parts. For example, if a
device can play only 5 Patches simultaneously, and receives the value 8 in the Mono message, then
the device will play 5 patches on MIDI channels 0 to 4 and ignore messages on channels 5 to 7.

Most devices capable of Monophonic operation, allow the user to specify a Base Channel. This will
be the lowest MIDI channel that the device responds to. For example, if a Mono message specifies
that the device is to respond to only 2 channels, and its Base Channel is 2, then the device responds
to channels 2 and 3.

NOTE: When a device receives a Mono Operation message, it should automatically turn off all
playing notes.

Polyphonic Operation

Number: 127

Affects:

Enables Polyphonic operation (thus disabling Monophonic operation). See the discussion on MIDI
Modes.

Value Range:

The value byte isn't used and defaults to 0.

NOTE: When a device receives a Poly Operation message, it should automatically turn off all
playing notes.

MIDI Modes
Some MIDI devices can be switched in and out of Omni state.

When Omni is off, a MIDI device can only respond to Voice Category messages (ie, Status bytes of
0x80 to 0xEF) upon a limited number of channels, usually only 1. Typically, the device allows the
musician to pick one of the 16 MIDI channels that the device will respond to. This is then referred to
as the device's Base Channel. So for example, if a device's Base Channel is set to 1, and a Voice
Category message upon channel 2 arrives at the device's MIDI IN, the device ignores that message.

NOTE: Virtually all modern devices allow the musician to manually choose the Base Channel. A
device may even define its own SysEx message that can change its Base Channel. Remember that
SysEx messages are of the System Common Category, and therefore aren't (normally) tied to the
Base Channel itself.

When Omni is on, a device doesn't respond to just one MIDI channel, but rather, responds to all 16
MIDI channels. The only benefit of Omni On is that, regardless of which channel any message is
received upon, a device always responds to the message. This mades it very foolproof for a musician
to hook up two devices and always have one device respond to the other regardless of any MIDI
channel discrepancies between the device generating the data (ie, referred to as the transmitter) and
the device receiving the data (ie, referred to as the receiver). Of course, if the musician daisy-chains
another device, and he wants the 2 devices to play different musical parts, then he has to switch
Omni Off on both devices. Otherwise, a device with Omni On will respond to messages intended for
the other device (as well as messages intended for itself).

NOTE: Omni can be switched on or off with the Omni On and Omni Off controller messages. But
these messages must be received upon the device's Base Channel in order for the device to respond
to them. What this implies is that even when a device is in Omni On state (ie, capable of responding
to all 16 channels), it still has a Base Channel for the purpose of turning Omni On or Off.

One might think that MultiTimbral devices employ Omni On. Because you typically may choose
(upto) 16 different Patches, each playing its own musical part, you need the device to be able to
respond to more than one MIDI channel so that you can assign each Patch to a different MIDI
channel. Actually, MultiTimbral devices do not use Omni On for this purpose. Rather, the device
regards itself as having 16 separate sound modules (ie, Parts) inside of it, with each module in Omni
Off mode, and capable of being set to its own Base Channel. Usually, you also have a "master" Base
Channel which may end up having to be set the same as one of the individual Parts. Most
MultiTimbral devices offer the musician the choice of which particular channels to use, and which to
ignore (if he doesn't need all 16 patches playing simultaneously on different channels). In this way,
he can daisy-chain another multitimbral device and use any ignored channels (on the first device)
with this second device. Unfortunately, the MIDI spec has no specific "MultiTimbral" mode
message. So, a little "creative reinterpretation" of Monophonic mode is employed, as you'll learn in a
moment.

In addition to Omni On or Off, many devices can be switched between Polyphonic or Monophonic
operation.

In Polyphonic operation, a device can respond to more than one Note On upon a given channel. In
other words, it can play chords on that channel. For example, assume that a device is responding to
Voice Category messages on channel 1. If the device receives a Note On for middle C on channel 1,
it will sound that note. If the device then receives a Note On for high C also on channel 1 (before
receiving a Note Off for middle C), the device will sound the high C as well. Both notes will then be
sounding simultaneously.

In Monophonic operation, a device can only respond to one Note On at a time upon a given channel.
It can't play chords; only single note "melodies". For example, assume that a device is responding to
Voice Category messages on channel 1. If the device receives a Note On for middle C on channel 1,
it will play that note. If the device then receives a Note On for high C (before receiving a Note Off
for middle C), the device will automatically turn off the middle C before playing the high C. So
what's the use of forcing a device capable of playing chords into such a Monophonic state? Well,
there are lots of Monophonic instruments in the world, for example, most brass and woodwinds.
They can only play one note at a time. If using a Trumpet Patch, a keyboard player might want to
force a device into Monophonic operation in order to better simulate a Trumpet. Some devices have

special effects that only work in Monophonic operation such as Portamento, and smooth transition
between notes (ie, skipping the VCA attack when moving from one Note On that "overlaps" another
Note On -- this is often referred to as legato and makes for a more realistic musical performance for
brass and woodwind patches). That's in theory how Mono operation is supposed to work, but
MultiTimbral devices created long after the MIDI spec was designed, had to subvert Mono operation
into Polyphonic operation in order to come up with a "MultiTimbral mode", as you'll learn.

NOTE: A device can be switched between Polyphonic or Monophonic with the Polyphonic and
Monophonic controller messages. But these messages must be received upon the device's Base
Channel in order for the device to respond to them.

Of course, a MIDI device could have Omni On and be in Polyphonic state. Or, the device could have
Omni On but be in Monophonic state. Or, the device could have Omni Off and be in Polyphonic
state. Or, the device could have Omni Off but be in Monophonic state. There are 4 possible
combinations here, and MIDI refers to these as 4 Modes. For example, Mode 1 is the aforementioned
Omni On / Polyphonic state. Here are the 4 Modes:

Mode 1 - Omni On / Poly

The device plays all MIDI data received on all 16 MIDI channels. If a MultiTimbral device, then it
often requires the musician to manually select which one Patch to play all 16 channels, and this
setting is usually saved in "patch memory".

Mode 2 - Omni On / Mono

The device plays only one note out of all of the MIDI data received on all 16 MIDI channels. This
mode is seldom implemented because playing one note out of all the data happening on all 16
channels is not very useful.

Mode 3 - Omni Off / Poly

The device plays all MIDI data received on 1 specific MIDI channel. The musician usually gets to
choose which channel he wants that to be. If a MultiTimbral device, then it often requires the
musician to manually select which one Patch to play that MIDI channel, and this setting is usually
saved in "patch memory".

Mode 4 - Omni Off / Mono

In theory, the device plays one note at a time on 1 (or more) specific MIDI channels. In practice, the
manufacturers of MultiTimbral threw the entire concept of Monophonic out the window, and use this
for "MultiTimbral mode". On a MultiTimbral device, this mode means that the device plays
polyphonically on 1 (or more) specific MIDI channels. The Monophonic controller message has a
Value associated with it. This Value is applicable in Mode 4 (whereas it's ignored in Mode 2), and
determines how many MIDI channels are responded to. If 1, then on a non-MultiTimbral device, this
would give you a truly monophonic instrument. Of course, on a MultiTimbral device, it gives you the
same thing as Mode 3. If the Value is 0, then a non-MultiTimbral device uses as many MIDI
channels as it has voices. So, for an 8 voice synth, it would use 8 MIDI Channels, and each of those
channels would play one note at a time. For a MultiTimbral device, if the Value is 0, then the device
uses as many MIDI channels as it has Parts. So, if a MultiTimbral device can play only 8 patches
simultaneously, then it would use 8 MIDI Channels, and each of those channels could play
polyphonically.

Some devices do not support all of these modes. The device should ignore controller messages which
attempt to switch it into an unsupported state, or switch to the next closest mode.

If a device doesn't have some way of saving the musician's choice of Mode when the unit is turned
off, the device should default to Mode 1 upon the next power up.

On final question arises. If a MultiTimbral device doesn't implement a true monophonic mode for
Mode 4, then how do you get one of its Parts to play in that useful Monophonic state (ie, where you
have Portamento and legato features)? Well, many MultiTimbral devices allow a musician to
manually enable a "Solo Mode" per each Part. Some devices even use the Legato Pedal controller
(or a General Purpose Button controller) to enable/disable that function, so that you can turn it
on/off for each Part over MIDI.

NOTE: A device that can both generate MIDI messages (ie, perhaps from an electronic piano
keyboard) as well as receive MIDI messages (ie, to be played on its internal sound circuitry), is
allowed to have its transmitter set to a different Mode and MIDI channel than its receiver, if this is
desired. In fact, on MultiTimbral devices with a keyboard, the keyboard often has to switch between
MIDI channels so that the musician can access the Parts one at a time, without upsetting the MIDI
channel assignments for those Parts.

RealTime Category Messages
Each RealTime Category message (ie, Status of 0xF8 to 0xFF) consists of only 1 byte, the Status.
These messages are primarily concerned with timing/syncing functions which means that they must
be sent and received at specific times without any delays. Because of this, MIDI allows a RealTime
message to be sent at any time, even interspersed within some other MIDI message. For example, a
RealTime message could be sent inbetween the two data bytes of a Note On message. A device
should always be prepared to handle such a situation; processing the 1 byte RealTime message, and
then subsequently resume processing the previously interrupted message as if the RealTime message
had never occurred.

For more information about RealTime, read the sections Running Status, Ignoring MIDI Messages,
and Syncing Sequence Playback.

Running Status
The MIDI spec allows for a MIDI message to be sent without its Status byte (ie, just its data bytes
are sent) as long as the previous, transmitted message had the same Status. This is referred to as
running status. Running status is simply a clever scheme to maximize the efficiency of MIDI
transmission (by removing extraneous Status bytes). The basic philosophy of running status is that a
device must always remember the last Status byte that it received (except for RealTime), and if it
doesn't receive a Status byte when expected (on subsequent messages), it should assume that it's
dealing with a running status situation. A device that generates MIDI messages should always
remember the last Status byte that it sent (except for RealTime), and if it needs to send another
message with the same Status, the Status byte may be omitted.

Let's take an example of a device creating a stream of MIDI messages. Assume that the device needs
to send 3 Note On messages (for middle C, E above middle C, and G above middle C) on channel 0.
Here are the 3 MIDI messages to which I'm referring.

0x90 0x3C 0x7F

0x90 0x40 0x7F

0x90 0x43 0x7F

Notice that the Status bytes of all 3 messages are the same (ie, Note On, Channel 0). Therefore the
device could implement running status for the latter 2 messages, sending the following bytes:

0x90 0x3C 0x7F

0x40 0x7F

0x43 0x7F

This allows the device to save time since there are 2 less bytes to transmit. Indeed, if the message that
the device sent before these 3 also happened to be a Note On message on channel 0, then the device
could have omitted the first message's Status too.

Now let's take the perspective of a device receiving this above stream. It receives the first message's
Status (ie, 0x90) and thinks "Here's a Note On Status on channel 0. I'll remember this Status byte. I
know that there are 2 more data bytes in a Note On message. I'll expect those next". And, it receives
those 2 data bytes. Then, it receives the data byte of the second message (ie, 0x40). Here's when the
device thinks "I didn't expect another data byte. I expected the Status byte of some message. This
must be a running status message. The last Status byte that I received was 0x90, so I'll assume that
this is the same Status. Therefore, this 0x40 is the first data byte of another Note On message on
channel 0".

Remember that a Note On message with a velocity of 0 is really considered to be a Note Off. With
this in mind, you could send a whole stream of note messages (ie, turning notes on and off) without
needing a Status byte for all but the first message. All of the messages will be Note On status, but
the messages that really turn notes off will have 0 velocity. For example, here's how to play and
release middle C utilizing running status:

0x90 0x3C 0x7F

0x3C 0x00 <-- This is really a Note Off because of 0 velocity

RealTime Category messages (ie, Status of 0xF8 to 0xFF) do not effect running status in any way.
Because a RealTime message consists of only 1 byte, and it may be received at any time, including
interspersed with another message, it should be handled transparently. For example, if a 0xF8 byte
was received inbetween any 2 bytes of the above examples, the 0xF8 should be processed
immediately, and then the device should resume processing the example streams exactly as it would
have otherwise. Because RealTime messages only consist of a Status, running status obviously can't
be implemented on RealTime messages.

System Common Category messages (ie, Status of 0xF0 to 0xF7) cancel any running status. In other
words, the message after a System Common message must begin with a Status byte. System
Common messages themselves can't be implemented with running status. For example, if a Song
Select message was sent immediately after another Song Select, the second message would still need
a Status byte.

Running status is only implemented for Voice Category messages (ie, Status is 0x80 to 0xEF).

A recommended approach for a receiving device is to maintain its "running status buffer" as so:

1. Buffer is cleared (ie, set to 0) at power up.
2. Buffer stores the status when a Voice Category Status (ie, 0x80 to 0xEF) is received.
3. Buffer is cleared when a System Common Category Status (ie, 0xF0 to 0xF7) is received.
4. Nothing is done to the buffer when a RealTime Category message is received.
5. Any data bytes are ignored when the buffer is 0.

Syncing Sequence Playback
A sequencer is a software program or hardware unit that "plays" a musical performance complete
with appropriate rhythmic and melodic inflections (ie, plays musical notes in the context of a musical
beat).

Often, it's necessary to synchronize a sequencer to some other device that is controlling a timed
playback, such as a drum box playing its internal rhythm patterns, so that both play at the same
instant and the same tempo. Several MIDI messages are used to cue devices to start playback at a
certain point in the sequence, make sure that the devices start simultaneously, and then keep the
devices in sync until they are simultaneously stopped. One device, the master, sends these messages
to the other device, the slave.The slave references its playback to these messages.

The message that controls the playback rate (ie, ultimately tempo) is MIDI Clock. This is sent by the
master at a rate dependent upon the master's tempo. Specifically, the master sends 24 MIDI Clocks,
spaced at equal intervals, during every quarter note interval.(12 MIDI Clocks are in an eighth note, 6
MIDI Clocks in a 16th, etc). Therefore, when a slave device counts down the receipt of 24 MIDI
Clock messages, it knows that one quarter note has passed. When the slave counts off another 24
MIDI Clock messages, it knows that another quarter note has passed.

For example, if a master is set at a tempo of 120 BPM (ie, there are 120 quarter notes in every
minute), the master sends a MIDI clock every 20833 microseconds. (ie, There are 1,000,000
microseconds in a second. Therefore, there are 60,000,000 microseconds in a minute. At a tempo of
120 BPM, there are 120 quarter notes per minute. There are 24 MIDI clocks in each quarter note.
Therefore, there should be 24 * 120 MIDI Clocks per minute. So, each MIDI Clock is sent at a rate
of 60,000,000/(24 * 120) microseconds).

The master needs to be able to start the slave precisely when the master starts. The master does this
by sending a MIDI Start message. The MIDI Start message alerts the slave that, upon receipt of the
very next MIDI Clock message, the slave should start the playback of its sequence. In other words,
the MIDI Start puts the slave in "play mode", and the receipt of that first MIDI Clock marks the
initial downbeat of the song (ie, MIDI Beat 0). What this means is that (typically) the master sends
out that MIDI Clock "downbeat" immediately after the MIDI Start. (In practice, most masters allow
a 1 millisecond interval inbetween the MIDI Start and subsequent MIDI Clock messages in order to
give the slave an opportunity to prepare itself for playback). In essense, a MIDI Start is just a
warning to let the slave know that the next MIDI Clock represents the downbeat, and playback is to
start then. Of course, the slave then begins counting off subsequent MIDI Clock messages, with
every 6th being a passing 16th note, every 12th being a passing eighth note, and every 24th being a
passing quarter note.

A master stops the slave simultaneously by sending a MIDI Stop message. The master may then
continue to send MIDI Clocks at the rate of its tempo, but the slave should ignore these, and not
advance its "song position". Of course, the slave may use these continuing MIDI Clocks to ascertain

what the master's tempo is at all times.

Sometimes, a musician will want to start the playback point somewhere other than at the beginning
of a song (ie, he may be recording an overdub in a certain part of the song). The master needs to tell
the slave what beat to cue playback to. The master does this by sending a Song Position Pointer
message. The 2 data bytes in a Song Position Pointer are a 14-bit value that determines the MIDI
Beat upon which to start playback. Sequences are always assumed to start on a MIDI Beat of 0 (ie,
the downbeat). Each MIDI Beat spans 6 MIDI Clocks. In other words, each MIDI Beat is a 16th note
(since there are 24 MIDI Clocks in a quarter note, therefore 4 MIDI Beats also fit in a quarter). So, a
master can sync playback to a resolution of any particular 16th note.

For example, if a Song Position value of 8 is received, then a slave should cue playback to the third
quarter note of the song. (8 MIDI beats * 6 MIDI clocks per MIDI beat = 48 MIDI Clocks. Since
there are 24 MIDI Clocks in a quarter note, the first quarter occurs on a time of 0 MIDI Clocks, the
second quarter note occurs upon the 24th MIDI Clock, and the third quarter note occurs on the 48th
MIDI Clock).

A Song Position Pointer message should not be sent while the devices are in play. This message
should only be sent while devices are stopped. Otherwise, a slave might take too long to cue its new
start point and miss a MIDI Clock that it should be processing.

A MIDI Start always begins playback at MIDI Beat 0 (ie, the very beginning of the song). So, when
a slave receives a MIDI Start, it automatically resets its "Song Position" to 0. If the master needs to
start playback at some other point (as set by a Song Position Pointer message), then a MIDI Continue
message is sent instead of MIDI Start. Like a MIDI Start, the MIDI Continue is immediately
followed by a MIDI Clock "downbeat" in order to start playback then. The only difference with
MIDI Continue is that this downbeat won't necessarily be the very start of the song. The downbeat
will be at whichever point the playback was set via a Song Position Pointer message or at the point
when a MIDI Stop message was sent (whichever message last occurred). What this implies is that a
slave must always remember its "current song position" in terms of MIDI Beats. The slave should
keep track of the nearest previous MIDI beat at which it stopped playback (ie, its stopped "Song
Position"), in the anticipation that a MIDI Continue might be received next.

Some playback devices have the capability of containing several sequences. These are usually
numbered from 0 to however many sequences there are. If 2 such devices are synced, a musician
typically may set up the sequences on each to match the other. For example, if the master is a
sequencer with a reggae bass line for sequence 0, then a slaved drum box might have a reggae drum
beat for sequence 0. The musician can then select the same sequence number on both devices
simultaneously by having the master send a Song Select message whenever the musician selects that
sequence on the master. When a slave receives a Song Select message, it should cue the new song at
MIDI Beat 0 (ie, reset its "song position" to 0). The master should also assume that the newly
selected song will start from beat 0. Of course, the master could send a subsequent Song Position
Pointer message (after the Song Select) to cue the slave to a different MIDI Beat.

If a slave receives MIDI Start or MIDI Continue messages while it's in play, it should ignore those
messages. Likewise, if it receives MIDI Stop messages while stopped, it ignores those.

Ignoring MIDI Messages
A device should be able to "ignore" all MIDI messages that it doesn't use, including currently
undefined MIDI messages (ie Status is 0xF4, 0xF5, 0xF9, or 0xFD). In other words, a device is

expected to be able to deal with all MIDI messages that it could possibly be sent, even if it simply
ignores those messages that aren't applicable to the device's functions.

If a MIDI message is not a RealTime Category message, then the way to ignore the message is to
throw away its Status and all data bytes (ie, bit #7 clear) up to the next received, non-RealTime
Status byte. If a RealTime Category message is received interspersed with this message's data bytes
(remember that all RealTime Category messages consist of only 1 byte, the Status), then the device
will have to process that 1 Status byte, and then return to the process of skipping the initial message.
Of course, if the next received, non-RealTime Status byte is for another message that the device
doesn't use, then the "skip procedure" is repeated.

If the MIDI message is a RealTime Category message, then the way to ignore the message is to
simply ignore that one Status byte. All RealTime messages have only 1 byte, the Status. Even the
two undefined RealTime Category Status bytes of 0xF9 and 0xFD should be skipped in this manner.
Remember that RealTime Category messages do not cancel running status and also could be sent
interspersed with some other message, so any data bytes after a RealTime Category message must
belong to some other message.

